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Confined vortex breakdown generated by a rotating cone within a closed cylindrical
container has been studied both by numerical simulation and by experimental tech-
niques. A comprehensive investigation of the various flow regimes has been carried out
by flow visualization. From laser–Doppler measurements of the entire flow field (three
velocity components) detailed maps of the time-averaged flow structures for single and
double breakdown have been constructed. Three-dimensional time-dependent simula-
tions of steady and unsteady breakdown have been performed. Steady numerical and
experimental flow fields obtained at Reynolds number 2200 for a gap ratio of 2 show
notable agreement. At critical Reynolds numbers of approximately 3095, for a gap
ratio of 2, and 2435, for a gap ratio of 3, the flow was observed becoming unsteady.
The periodic behaviour exhibited by the unsteady flow suggested the occurrence of a
supercritical Hopf bifurcation. This conjecture was confirmed by the evolution of the
oscillation amplitude as a function of criticality, measured for a gap ratio of 3. The dy-
namical behaviour of unsteady vortex breakdown structures is depicted by numerical
simulation of two distinct oscillatory regimes, at Reynolds numbers 2700 and 3100. A
thorough analysis of the numerical results has shown that whereas the former regime
is characterized by the steady oscillation of closely axisymmetric breakdowns, the lat-
ter displays precession of breakdown structures about the central axis. Additionally, it
was observed that the mode bringing about the Hopf bifurcation is non-axisymmetric,
with azimuthal periodicity of π/2 radians. From examination of measured velocity
power spectra at higher Reynolds numbers, a transition scenario was also educed. In
the present case, the Ruelle–Takens–Newhouse theorem has been shown to apply.

1. Introduction
The great practical significance attributed to confined vortex flows proceeds from

the widespread application of swirling flow in industrial processes and devices (see e.g.
Escudier 1987). Throughout recent years we have learned to make advantageous use
of most of the characteristics exhibited by sufficiently intense vortex flows, such as the
large regions of recirculating flow, which are used for flame stabilization (Syred & Beér
1974), and the strongly dissipative nature, which finds application in vortex valves
(Lawley & Price 1972). However, some of the features of vortex flows have proved
to be pernicious in a number of situations as well. Induced vibrations and discrete-
frequency noise have also been identified in various flow machinery, as a consequence
of particular changes in the structure of the core of the swirling flow. Perhaps the most
interesting transformation occurring in vortex flows is that termed ‘vortex breakdown’.
This phenomenon, first observed by Peckham & Atkinson (1957) in the tip vortices
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of a delta wing, has been the theme of much work with the aim of providing a better
understanding of the underlying physical mechanisms, as demonstrated by several
reviews (Hall 1972; Leibovich 1978, 1984; Escudier 1988). The continuing interest in
the subject is mainly a result of the large variety of forms that have been recognized as
a manifestation of the phenomenon (Sarpkaya 1971a,b; Faler & Leibovich 1977). Such
diversity of characteristics has hampered efforts to establish a satisfactorily general
interpretation of its fundamental nature and, consequently, the controversy persists.

Vortex breakdown has been defined as an abrupt change in the character of
vortex cores (Benjamin 1962). In more recent years the concept has evolved and
it has incorporated the observation that this change is often characterized by the
formation of internal stagnation points and regions of reversed flow. The theoretical
investigation of vortex breakdown was initially based on wave-motion theories (Squire
1960; Benjamin 1962, 1967). Similar approaches have also been pursued by Randall
& Leibovich (1973), who hypothesized a model based on a theory of weakly nonlinear
waves propagating on critical flows, and by Escudier & Keller (1983), who extended
Benjamin’s conjugate-state transition ideas by formulating the hypothesis of a two-
stage transition. Recently, Leibovich & Kribus (1990) have also followed the concepts
introduced by Benjamin and found solitons in inviscid vortex flows that may be
also the origin of some vortex breakdown structures. Vortex instability was also
conjectured for the explanation of breakdown, first by Jones (1960), and later by
Lessen, Singh & Paillet (1974), Garg & Leibovich (1979) and Leibovich & Stewartson
(1983), to name a few. However, as pointed out by Escudier (1988), there is not much
evidence from experimental investigations to support the view that instability plays a
major role in vortex breakdown.

The awareness of the inherent difficulties in finding a complete theory of vortex
breakdown has led to a substantial number of experimental studies. By imparting
swirl to the fluid in an upstream guidevane arrangement, radially confined and highly
axisymmetrical vortices have been generated in tubes by Lambourne & Bryer (1961),
Harvey (1962), Cassidy & Falvey (1970), Sarpkaya (1971a, b, 1974), Faler & Leibovich
(1977, 1978), Bornstein & Escudier (1984), Escudier & Keller (1985) and many others.
Escudier and his co-workers have nevertheless preferred the slit-tube arrangement in
their investigations (Escudier, Bornstein & Zehnder 1980; Escudier, Bornstein &
Maxworthy 1982; Escudier & Zehnder 1982; Escudier 1983), claiming that a thinner
vortex core could be produced by the use of this alternative flow system. Another
flow configuration that has been employed in the study of vortex breakdown is the
closed cylindrical container, where the fluid motion is established by a rotating element
located at one end of the cylinder. Several researchers have adopted this device in their
experimental studies since it can provide virtually perfect axisymmetric flows under
highly controlled conditions. Thus, Vogel (1968) and Escudier (1984) have performed
visualization experiments, which provided significant insight into the morphology of
confined vortex breakdown generated inside cylindrical containers. Moreover, the
detailed laser–Doppler measurements of Ronnenberg (1977) have confirmed Vogel’s
conclusions, but quantitative descriptions of the entire flow structures in this kind of
confined breakdown are scarce.

The emergence of new experimental techniques, such as the combination of particle
tracking velocimetry and volume scanning, have recently provided detailed measure-
ments of bubble- and spiral-type structures in unsteady and non-axisymmetric vortex
breakdown (Brücker & Althaus 1992, 1995; Brücker 1993). Using the guidevane appa-
ratus, these authors have identified a tilted vortex-ring-like structure precessing about
the longitudinal axis, in close agreement with previous observations by Sarpkaya.
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During the last decade, numerical simulations of vortex breakdown have received
special attention as a direct consequence of the advent of more powerful computing
facilities. Lugt & Haussling (1982) performed the first numerical study of swirling flow
confined to a cylindrical container that could reproduce the occurrence of breakdown.
Since then, other solutions displaying steady vortex breakdown have been obtained
for the same geometry by Lugt & Abboud (1987), Daube & Sørensen (1989) and
Lopez (1990). The unsteadiness of the phenomenon was subsequently investigated by
Lopez & Perry (1992) and Sørensen & Christensen (1995), using nonlinear dynamical
systems theory to interpret the mutations observed in the flow kinematics. These
excellent studies were, unfortunately, limited by the restrictive premise of axisymmetric
flow. Few three-dimensional time-dependent simulations of vortex breakdown have
been reported in the literature. The work of Liu & Menne (1989), Spall, Gatski &
Ash (1990) and Breuer & Hänel (1993) are notable exceptions, but these authors
considered synthetic initial conditions (e.g. a Burgers vortex) and their definition of
boundary conditions was somewhat arbitrary. As a consequence, the validation of
their results against experiments can only be made on qualitative grounds.

In this paper, the swirling flow driven by a rotating cone within a closed cylindrical
container is investigated employing numerical and exprimental techniques. The main
idea behind the use of a conical driver instead of the classical flat rotor was that, from
a topological point of view, the apex of a cone would provide a well-defined nodal
point for the central streamline impinging upon the rotor wall. Thus, the present
geometry is a simple variant of that employed by Vogel (1968) and Escudier (1984).
Regardless of the expected similarities between the aforementioned investigations and
the present one, it will be shown that this study extends our understanding of these
flows in a substantial manner. This objective has been achieved by emphasizing the
analysis of formally three-dimensional time-dependent regimes.

It was observed that, for some combinations of gap ratio (see figure 1b) and
Reynolds numbers, the confined vortex undergoes breakdown. The various flow
regimes have been experimentally identified and characterized. A systematic com-
parison between detailed laser–Doppler measurements of the entire flow field and
results of a numerical simulation was performed for a steady regime exhibiting vortex
breakdown. The full three-dimensional time-dependent Navier–Stokes equations, for-
mulated in curvilinear coordinates to account for the complexity of the flow geometry,
have been solved. Hence, it was possible to reveal striking features of the morphol-
ogy and dynamics of oscillatory vortex breakdown confined to a closed cylindrical
vessel. The analysis of experimentally obtained power spectra for unsteady regimes
has further allowed a route to turbulence in the present flow to be postulated.

The paper is divided into five sections. In § 2, the experimental techniques are
described. This includes a description of both visualization and measuring procedures.
The theoretical equations and the numerical methods used are presented in § 3.
Section 4 comprises the presentation and discussion of the results, followed by a brief
summary of the main findings in § 5.

2. Experimental arrangement and procedure
2.1. Test section and instrumentation

The experimental setup is schematically depicted in figure 1(a) and the essential
features of the test section are shown in detail in figure 1(b). The flow was confined to
a Duran glass cylinder, geometrically characterized by the inner radius R = 0.050 m
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Phase Working fluid Kinematic viscosity

Flow visualization 1/5 water+4/5 glycerine 49.8× 10−6 m2 s−1 @ 25 ◦C
Velocity measurements Baby oil 31.2× 10−6 m2 s−1 @ 21 ◦C

Table 1. Working fluids used in the investigation.

and the height H , adjustable up to the maximum value of the gap ratio H/R = 4 by
the use of a screw attached to the stator. The working fluid was set into motion by a
rotating cone of height R (the rotor) that was driven by an electronically controlled
motor. This allowed the spinning velocity of the rotor to be adjusted in a continuous
range between 30 r.p.m. (Ω = 3 rad s−1) and 1500 r.p.m. (Ω = 157 rad s−1). A digital
tachometer with a photocell was permanently active to ensure the accuracy of the
velocity (±0.1 r.p.m. in the range 30–1000 r.p.m. and ±1 r.p.m. in the range 1000–1500
r.p.m.). Nevertheless, in order to guarantee stable operating conditions, the cylindrical
container was also immersed in a thermostatically controlleld bath, so that the fluid
viscosity could be kept constant. This procedure was applied with the additional aim
of matching the refractive index of the fluid with that of the glass walls. Thus, the
fluid inside the cylinder was used in the bath as well, controlling the corresponding
temperature to ±0.1 ◦C with the use of Grant TD immersion thermostat and a
copper coil in which cooling water was circulated. The fluid was pumped from the
reservoir at the bottom to the test section at the top and then recirculated inside
the (rectangular) glass box surrounding the cylinder. Although the fluid was usually
returned to the reservoir by gravity, a secondary pump was used when larger flow
rates were required. The fluid level in the test section was maintained constant merely
by using an overflow pipe, its height determining the intended level as shown in
figure 1(b). As the heat transfer between working and recirculating fluids was taking
place through a 5 mm thick glass wall, a secondary control system was installed
to prevent any generation of local temperature gradients. This system consisted of
a type-K (compensated) thermocouple probe, inlayed in the stator wall during the
measurements but still allowing exploration of the whole space between the walls and
the rotor (fundamentally to avoid the presence of fluid stratification).

The selection of the working fluid was essentially determined by the requirement
of applying a refractive index matching procedure during the course of the velocity
measurements. This procedure minimized the problem of distortion of the optical
paths through the curved surfaces in the liquid flow, so that reliable measurements
close to the walls could be carried out (see e.g. Pereira 1989). Other requirements
were imposed by specific physical properties of the fluid, with particular emphasis
on an appropriate viscosity value and a chemically inert behaviour and, finally, with
respect to flow visualization (demanding considerable amounts of fluid), by its cost.
For these reasons, two different fluids were employed, depending upon the phase of
the present investigations, as shown in table 1. The viscosities were measured using a
digital viscometer Brookfield (model DV-II) and those values were often confirmed
during the experiments.

2.2. Flow visualization

Flow visualization was used to portray the salient features of steady and unsteady
regimes exhibited by the flow problem under investigation, before embarking on
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detailed quantitative measurements. In addition, this enabled us to establish a ‘road
map’, as will be shown in § 4, guiding later stages of this study.

Common to the flow visualization techniques employed to achieve our objective was
laser light sheet illumination. A 5 W Ar-ion laser was used as light source, together
with a fibre-optic illuminator to facilitate the placing of the light sheet on the flow
centreline. Laser beam expansion, to generate the light sheet (about 1.5 mm thick),
was accomplished with the help of a cylindrical lens. In some cases, to guarantee a
homogeneous illumination of the whole area of interest, an adjustable mirror was
required. Still photographs were taken at right angles to the sheet of light.

The most natural way of rendering flow motion visible is probably the one that
makes use of the light scattered by small particles. In the present case, particles had
to be added to the flowing fluid, hence some care was taken in order to make sure
that the motion of those particles closely approximated that of the fluid. Spherical
polystyrene particles (1–10 µm in diameter) were selected, displaying an adequate
response to rapid changes of the flow field and a quasi-neutral buoyant behaviour.
This procedure was broadly used to characterize steady regimes, although a few
instantaneous pictures of unsteady regimes have been obtained as well. However, the
interpretation of such observations in time-dependent flows is severely complicated
by the fact that, unlike steady flows, streamlines, streaklines and pathlines do not
generally coincide, as discussed by Merzkirch (1974). Aware of this pitfall, we did not
make extensive use of this technique to interpret the unsteady fluid motion. The usage
of an ultraspeed film (3200 ASA) allowed us to obtain well-contrasted black/white
photographs for fairly reduced exposure times (typically 1/8 to 1/2 s).

The second flow visualization technique employed in the present investigations was
the injection of fluorescent dye. Dilute solutions of solid crystals of Fluorescein and
Rhodamine-6G were prepared and carefully injected into the flow (with the aim of
minimizing the inherent disturbance), generating thin threads of dye which became
intensely bright when excited by the coherent light source. The anatomy of the flow
was thereby unveiled, providing complementary observations of the flow structures.
As a result of the strong fluorescence, ordinary daylight film (100 ASA) could be used
to produce colour photographs.

2.3. Velocity measurements

Laser–Doppler velocimetry (LDV) was extensively used during the quantitative phase
of the experiments. It is an expeditious technique for the measurement of the velocity
field associated with complex flows, having the substantial advantage of being non-
intrusive. Many details of the fundamentals and the principal aspects associated with
the application of LDV to fluid flow problems can be found in the literature (see e.g.
Durst, Melling & Whitelaw 1981; Adrian 1983).

The measurements were taken with a two-component LDV system from TSI
Inc. A 3 W (nominal) Ar-ion laser was employed for the velocimeter, which was
operated in the dual-beam (two green and two blue) backward-scatter mode. In order
to provide sensitivity to the flow direction, the system included an acousto-optic
modulator, which was set to generate a shift frequency of 200 kHz. The velocimeter
transfer constants were 5.315 (m s−1)/MHz and 5.042 (m s−1)/MHz, respectively for
green and blue beams. The backward-scatter light (green and blue) was collected
through transmitting and receiving lenses, focused into a multimode receiving fibre,
collimated with a double-input coupler and finally passed into a colour separator
so that the scattered light coming from each pair of laser beams could be isolated.
Two photomultipliers translated this input into analog signals which were monitored
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by a two-channel oscilloscope, filtered and processed using two frequency counters
(TSI 1990C) interfaced with a digital computer. Velocity values were evaluated by
ensemble averaging, calculated from 5000 samples, using TSI FIND Software. The
same software was used to control a three-dimensional ISEL traversing system where
a fibre-optic probe incorporating both transmitting and receiving optics was mounted.
In order to map the three-dimensional velocity field, two traverses through meridional
planes of the cylinder had to be carried out for each station along the axial direction.
During the first one, both axial and radial components were measured, and during the
second the circumferential component was measured. Figure 1(a) shows a schematic
diagram of this apparatus.

The errors incurred in the measurement of velocities are usually classified in
two major categories: systematic and random (or statistical). Within the first cat-
egory, non-turbulent Doppler broadening errors due to gradients of mean veloc-
ity across the measuring volume and sampling bias are, in general, the prevalent
sources of uncertainty. However, as this affects essentially the variance of the
velocity fluctuations (see e.g. Durst et al. 1981), its effect on mean velocities was
negligibly small. With respect to the latter, it was only possible to minimize its
consequences by using high seed rates compared to the fundamental velocity fluctu-
ation rates, as suggested for example by Dimotakis (1976) and Erdmann, Lehmann
& Tropea (1986). However, Yanta & Smith (1973) have proposed a theory that
provides us with estimates for the statistical errors in this category. According
to their analysis, the number of individual samples used to form the averages
during the course of the present velocity measurements allowed us to keep the
random errors below 2%, for a 95% confidence level. Thus, the various sources
of errors suggested an uncertainty for the time-averaged velocities of less than
4%.

The a posteriori analysis of the measured time series also made possible the
investigation of the spectral content of particular flow regimes, by calculating power
spectra and corresponding probability-density functions. It is well known that, in a
power spectrum, the frequency resolution is 1/T (if no averaging is employed to reduce
statistical noise), where T is the ‘length’ of the date record; the maximum frequency
that can be accounted for is the Nyquist frequency, ωN = ωS/2, ωS representing
the sampling frequency (see Bendat & Piersol 1971). In order to clearly identify the
various dynamical regimes displayed by the flow under investigation, it is desirable
to retain high spectral resolution and, simultaneously, to cover a wide spectral
band, demanding N = ωST � 1. The results to be presented in § 4 were typically
obtained for N = 213 samples. It should be mentioned that the value of ωS varied
from case to case, determined by the flow conditions, and the presence of spurious
components in the power spectra (‘aliasing’) was avoided by comparing two equivalent
measurements obtained with two different values of ωS (typically related by a ratio
of 10).

Aiming to minimize sampling errors and the presence of noise in the power spectra
computed from frequency counters signals, we have followed the suggestions of
Dimotakis (1976), Edwards & Jensen (1983) and Adrian & Yao (1987). Accordingly,
the data rate values were always kept above 400 Hz. Further, although Erdmann et al.
(1986) have demonstrated that bias errors can be more important in periodic flows,
it was observed that the zones of the flow characterized by the highest amplitudes
of periodic oscillation were also those where the time-averaged velocity was close to
zero and the probability–density distributions were nearly bimodal, such that the bias
of the negative velocities offset that of the positive velocities.
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3. Numerical formulation
3.1. Governing equations

The mass and momentum conservation equations for the unsteady flow of an incom-
pressible fluid can be written in vector form, independently of the coordinate system,
as

∇ · (ρν) = 0, (1)

∂

∂t
(ρν) + ∇ · (ρν : ν − τ ) = SF , (2)

where the stress tensor τ for a Newtonian fluid, from Stokes’ hypothesis, is given by

τ = −(p+ 2
3
µ∇ · ν)i + µ(∇ν + ∇tν). (3)

In the above equations ρ stands for the fluid density, µ for the dynamic viscosity, p
for the pressure, ν for the velocity vector and i for the unit tensor of second order.
On the right-hand side of (2), the source term SF accounts for the presence of body
forces.

At this stage, in order to split the vectorial momentum equation (2) into scalar
equations, the coordinate system must be selected. Out of the multiplicity of possible
choices, we preferred a locally fixed coordinate system, employing the Cartesian
velocity components, which has proved to produce a much simpler formulation of
the equations, where all vector and tensor components are expressed with reference
to the Cartesian base vectors. Additionally, the awkward emergence of curvature
terms (involving the Christoffel symbol), which account for the spatial variation
of the base vectors, is thereby avoided. Thus, there is no reason to establish the
distinction between contravariant and covariant components, which allows us to drop
the tensorial formalism in the use of subscripts and superscripts. Further, expressing
the divergence operator in the strong conservation form, the governing equations
(1)–(3) can finally be written as

∂

∂xm
(ρνiC

im) = 0, (4)

∂

∂t
(ρνi) +

1

g1/2

∂

∂xm

[
(ρνiνj − τij)Cjm

]
= SFi , (5)

where

τij = −(p+ 2
3
µ∇ · ν)δij +

µ

g1/2

(
∂νi

∂xm
Cmkδkj +

∂νj

∂xm
Cmkδki

)
, (6)

Cim ≡ Ci
m = g1/2 ∂y

i

∂xm
. (7)

In equations (4)–(7), the symbols δim ≡ δim denote Kronecker deltas, νi indicates
the Cartesian velocity component along direction i and g stands for the metric
tensor, g1/2 corresponding to the Jacobian of the coordinate transformation yi =
yi(xm) between the curvilinear non-orthogonal coordinate system (x1, x2, x3) and the
Cartesian coordinate system (y1, y2, y3).

3.2. Discretization procedure and method of solution

The numerical approach using the finite-volume method is employed to discretize
the governing equations (4)–(7) on a structured, non-orthogonal, non-staggered grid
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(a)

(b)

(c)

Figure 2. Example of the computational mesh: (a) top view; (b) meridional plane;
(c) three-dimensional view.

system. The physical domain is discretized in control volumes (CV ), defined by the
coordinates of the eight vertices (grid nodes) of generally distorted cubes. A hybrid
elliptic-algebraic procedure (see e.g. Thompson, Warsi & Mastin 1985) has been
adopted for the definition of those cubes or, in other words, for the generation of
the numerical mesh. An example of fine discretization (61 × 61 × 61 grid nodes) is
illustrated in figure 2, for H/R = 2.

The discretization procedure can be briefly described as follows. Equation (5)
is integrated in space, over each CV of the computational domain and in time,
over a time interval ∆t. The Crank–Nicholson time-stepping method is used to
advance diffusion terms in time, while the second-order Adams–Bashforth method is
applied to convection terms, rendering a fully second-order accurate time integration
scheme (see e.g. Roache 1976). The implicit calculation of diffusion terms makes
the present procedure semi-implicit. The time increment ∆t is typically calculated
from a CFL condition, where CFL stands for the Courant–Friedrichs–Lewy number.
The remainder of the numerical method is, in essence, similar to that proposed by
Coelho & Pereira (1993), the main difference being that, in the present method, both
convection and diffusion terms are discretized using second-order-accurate central
differences.

The pressure field is obtained from the solution of a pressure Poisson equation ob-
tained by combining continuity and momentum equations, as shown e.g. by Pereira &
Sousa (1993). However, as a non-staggered grid system was employed, the evaluation
of the convective fluxes arising in the out-of-balance mass source term of the Poisson
equation requires the interpolation of the velocity components at the faces of a CV .
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In order to avoid decoupling between pressure and velocities, the practice proposed
by Rhie & Chow (1983) and Kobayashi & Pereira (1991) is implemented as well.

The set of equations that we propose to solve is naturally subject to boundary
conditions. Physically meaningful no-slip conditions, either for stationary or moving
walls, are imposed on all boundaries confining the computational domain. The
numerical treatment of such conditions is trivial, as the present formulation deals
with the primitive variables of the flow. Finally, the numerical solution procedure
entails solving a system of algebraic equations, which results from the discretization
procedure. This is carried out by using the strongly implicit procedure of Stone (1968).
Additional details regarding the numerical formulation are given by Sousa (1995).

4. Results and discussion
4.1. Flow regimes

The various flow regimes were experimentally observed by gradually increasing the
angular speed, Ω, of the rotor (see figure 1b), initially at rest. As a result, a rotating
boundary layer develops over the slanted surface of the rotor, starting the radial
motion of the fluid, which moves away from the cylinder axis in spiralling trajectories.
Owing to the presence of the cylinder walls, the fluid is forced to move upwards. This
gives rise to the formation of a new boundary layer over the vertical solid surface,
but the spiralling motion is maintained. Except for viscous losses, the fluid conserves
its angular momentum while moving towards the top wall (stator), which is reached
eventually. Then, a three-dimensional boundary layer is again established, retarding
the fluid in the vicinity of the wall. To preserve the balance between radial pressure
gradient and centrifugal forces, this deceleration further induces a reduction in the
radius of the fluid trajectories in this region, directing the fluid, once more, to the
cylinder’s axis. Thus, the convergence of rapidly rotating fluid paths to the centreline
starts the creation of a concentrated vortex core. Finally, the flow is maintained by
continuity, as the rotor draws the spiralling fluid down this central vortex, repeating
the process by sending it, once again, outwards to the side walls.

Based on the above description, it seems natural to conclude that the velocity field
corresponding to the flow inside the cylinder is driven by an axial component, limited
in its growth due to geometrical restraints (the rotor and the stator), and by a swirl
component, always increasing as Ω increases. As a consequence of the continuous
increase in swirl, vortex breakdown in expected to occur (Hall 1972). However, in the
present case, the appearance of the phenomenon with increasing Ω has been shown
to be a smooth process, in agreement with the bifurcation analysis carried out by
Tsitverblit (1993). This behaviour is sequentially illustrated in figures 3 and 4, obtained
by flow visualization (laser light sheet and particles) for increasing values of Ω. Thus,
as the occurrence of breakdown does not present the abruptness of a critical event, it is
necessary to adopt a specific criterion for the identification of its appearance and dis-
appearance. The presence of a stagnation point in the central axis, invariably heralding
the formation of a recirculation bubble, seemed to be the most sensible criterion for the
appearance of a steady breakdown. Correspondingly, the absence of stagnation points
in the central axis provided evidence of the disappearance of steady vortex breakdown.

The photographs in figure 3 refer to H/R = 2, for several values of the Reynolds
number Re = ΩR2/ν. In figure 3(a), the flow is as described in the first paragraph of
this Section (Re = 1090): the flow establishes a single large recirculation area, occu-
pying the whole cylinder. However, figure 3(b) displays that, as Re increases to 1320,
the fluid undergoes a sudden deceleration at the axis, near the top of the rotor, with
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(a)

(c)

(e)

(b)

(d)

( f )

Figure 3. Flow visualization of changes in flow structure for H/R = 2: (a) Re = 1090;
(b) Re = 1320; (c) Re = 1395; (d) Re = 1555; (e) Re = 1880; (f) Re = 2560.

the concomitant divergence of adjacent fluid trajectories (enlargement of the vortex
core). Subsequent to the appearance of a stagnation point, this region of the flow gives
rise to a small recirculation bubble, associated with the incipient formation of vortex
breakdown. As Re is progressively increased to 1395, 1555, 1880 and 2570 (figures
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(a)

(c)

(b)

(d)

Figure 4 (a–d). For caption see facing page.

3c–3f), the flow visualization shows the maturation of this bubble (clearly observed
in figure 3d) and its upwards migration. During this process, the recirculation bubble,
hereinafter referred as vortex breakdown, grows continuously in the radial direction.
As a result, the breakdown bubble is seen to assume disproportionate dimensions,
its boundaries, formerly well defined, becoming increasingly vague (figure 3f). These
symptomatic characteristics indicate that the recirculating flow structure cannot exist
anymore and, in fact, it was possible to witness its extinction at slightly higher values
of Re.

An identical procedure was followed for H/R = 3. Thus, one can readily view
that from figure 4(a) to figure 4(b) the swirl effects are emphasized, as shown by the
divergence of fluid trajectories in the latter image, as described earlier for H/R = 2.
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(e) ( f )

Figure 4. Flow Visualization of changes in flow structure for H/R = 3: (a) Re = 1590;
(b) Re = 2065; (c) Re = 2200; (d) Re = 2390; (e) Re = 2515; (f) Re = 2970.

Still, it is not possible, at that stage (Re = 2065), to detect any stagnant fluid.
Conversely, figure 4(c) exhibits the initial formation of a double breakdown (Re =
2200). The increase in angular speed gives rise to a primary bubble, located not very
far from the top wall, and a secondary bubble, more stretched and less well defined,
that settles underneath. One should note that the formation of both recirculation
bubbles is nearly simultaneous, though careful observations allowed to conclude that
the primary breakdown occurs slightly earlier than the secondary breakdown. At
Re = 2390 (figure 4d) and 2515 (figure 4e), the bubbles are clearly established. The
upward movement is, once again, clear, concurrently bringing the structures closer
to each other. At higher values of Re, in this case well before the dissipation of the
recirculation bubbles, the flow is observed to be notably time-dependent: we must
stress that figure 4(f) is an instantaneous snapshot of a flow regime (Re = 2970)
which is, actually, periodic. A very slight unsteadiness already exhibited at Re = 2515
is not perceptible in figure 4(f).

The above description constitutes only a brief, albeit comprehensive, excerpt of the
extensive flow visualization study conducted during the course of the experiments,
which allowed us to establish a ‘stability diagram’ for confined swirling flow generated
by a rotating cone. The resemblance between the diagram depicted in figure 5 (present
case) and a comparable representation for the case of a rotating disk, mapped by
Escudier (1984), is, as one might suspect, readily apparent. The main discrepancy
lies on the shift of the main curve (singly breakdown) to larger values of H/R and
Re. Additionally, it can be seen that the area corresponding to double breakdown
is, again for the present case, significantly reduced. A simple explanation for these
differences can be found by recognizing that the space available at the central axis
is smaller for the case of a rotating cone, therefore inhibiting the occurrence of
vortex breakdown. This also explains why triple breakdown did not occur for any
combination of the parameters H/R and Re, in clear contrast to the flow investigated
by Escudier. There is a considerable uncertainty associated with the dashed line in
the diagram, marking the border between steady and unsteady flow, since the start
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Figure 5. Stability boundaries for single and double breakdown, and the boundary between
oscillatory and steady flow.

of time-dependent behaviour was very difficult to perceive. It was only detectable by
the nearly undiscernible oscillation of the top stagnation point location. This matter
will be addressed in detail later in §§ 4.3 and 4.4.

4.2. Steady breakdown

The application of LDV in conjunction with a refractive index matching technique
made possible the accurate mapping of the complete three-dimensional velocity field
in the presence of vortex breakdown. The extension of the measurements up to
the walls, which could not be accomplished in similar experiments performed by
Bornstein & Escudier (1984), was therefore achievable. Simultaneously, the procedure
allowed the measurement of the radial velocity component, which is rarely reported
for this type of flows (see e.g. Escudier 1988).

The velocity measurements were carried out for two regimes: H/R = 2 and
Re = 2200; H/R = 3 and Re = 2570. These particular regimes were selected because
both cases exhibit large and fundamentally steady breakdown bubbles (in fact, the
second regime displays a slight unsteadiness). The projection of stream surfaces on
one of the cylinder’s meridional planes (hereinafter referred as ‘streamlines’) could be
constructed from the measurements of the axial velocity component. Figures 6(a) and
6(b) portray the steady flow streamlines for each of the regimes, clearly showing the
structure of the recirculation bubbles. As expected (see figure 5), single breakdown is
obtained for H/R = 2, while double breakdown is observed for H/R = 3. In both
cases, the flow is observed to be axisymmetric, within experimental accuracy. The
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Figure 6. Streamline patterns constructed from axial velocity measurements:
(a) H/R = 2 and Re = 2200; (b) H/R = 3 and Re = 2570.

large difference between the amount of fluid recirculated inside the bubbles and the
main (external) flow rate is expressed as the ratio of the stream function maxima
to the minima, for both of the above regimes: 1.6 × 10−3 for H/R = 2; 1.3 × 10−3

and 3.3 × 10−4 for H/R = 3, respectively corresponding to primary and secondary
bubbles. Thus, one concludes that the fluid velocities inside the recirculation bubbles
are much smaller than those occurring in the remainder of the flow, which may
serve as an explanation for the small departure from axisymmetry displayed in figure
6(a). The numerical simulation of this flow regime would confirm the axisymmetry
of steady vortex breakdown generated by a confined rotating cone, as will be seen
in the next paragraphs. However, before the presentation of those results, we would
like to examine another issue. The streamlines in figure 6 show that each breakdown
bubble is bounded by a stagnation point. This could not be indisputably observed
in the results of the flow visualization presented in the previous subsection, but the
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(a)

(b)

Figure 7. Visualization of vortex breakdown structures: (a) H/R = 2 and Re = 1655;
(b) H/R = 3 and Re = 2425.
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Figure 8. Contours of the Cartesian component of vorticity (normal to the meridional plane),
calculated for H/R = 2 and Re = 2200.
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use of fluorescent dye as tracer produced excellent photographs of the flow anatomy,
revealing that all bubbles are ‘closed’ and similar in structure to those observed by
Escudier (1984). Figure 7(a), displaying single breakdown forH/R = 2 and Re = 1655,
and figure 7(b), depicting double breakdown for H/R = 3 and Re = 2425, show these
results. An ‘open’ structure, such as that described by Bornstein & Escudier (1984)
for a different flow geometry, was not to be found for the present steady regimes.

The three-dimensional numerical simulation of steady vortex breakdown was con-
ducted for the regime characterized by H/R = 2 and Re = 2200 (Ω = 27.4 rad s−1).
The procedure adopted to perform the computations is described in detail in § 3, but,
in order to reduce the computational costs, the simulations were started from the
first-order-accurate solution produced by the method of Coelho & Pereira (1993).
The time step was selected in accordance to the condition max (CFL) 6 0.4, in
order to comply with the stability constraints of the numerical method. Hence, the
time-dependent simulation still required approximately 3500 time step to reach an
asymptotically steady solution. During this process, the flow field was seen to evolve
significantly from the initial condition to the final (second-order-accurate) result, as
reported by Sousa (1995).

As we are dealing with a flow governed by vortical structures, we start the discussion
of the computational results by presenting a vorticity map. Figure 8 shows the contours
of the Cartesian component of the vorticity vector normal to the meridional plane, ζx
(in this plane, the only difference between ζx and the azimuthal component is a change
of sign through the axis). Taking advantage of the flow symmetry, we will refer to the
left half of the plane only. The figure shows a region, adjacent to the sidewall, where
ζx reaches the maximum positive value (red). It is followed by a larger intermediate
zone, which is characterized by the maximum negative value (blue). In between these
two regions, a narrow band of high vorticity gradients can be found. These features
are consistent with the deceleration of the fluid in the vicinity of the wall, by viscous
effects, giving rise to the development of a boundary layer. Most of the central area of
the flow exhibits low gradients of ζx, as the inviscid effects dominate, basically corre-
sponding to fluid in solid body rotation. The only exception to these smooth variations
is a vortex ring of positive vorticity (naturally, only the cross-section is seen). Similar
observations have been reported by Lopez (1990), providing a physical explanation
for the occurrence of breakdown based on the ‘positive feedback mechanism’ (Brown
& Lopez 1990). The vortex ring, initially formed as a result of the divergence of the
axial flow while the fluid moves away from the top wall, induces a velocity reduction,
in accordance with the Biot-Savart law. Consequently, a larger divergence of the
streamlines is generated by mass conservation, which is, in turn, accompanied by the
intensification of vorticity concentration. A stronger vortex ring induces a new decel-
eration of the axial flow, ultimately giving rise to the recirculation bubble. Significant
amounts of vorticity can be observed to exist near the outer edges of the breakdown
bubble, as experimentally observed by Brücker & Althaus (1995). Similar results have
been also obtained in the numerical simulations performed by Spall et al. (1990) for
a Burgers-type vortex, where the evaluation of the terms in equation for the rate of
change of enstrophy was performed. Based on those results, they stated that, although
the essential mechanisms in the origin of vortex breakdown are of inviscid character,
a complete description of the phenomenon can only be achieved through the inclusion
of viscous effects in the analysis. Additionally, these effects would be dominant in the
region where the magnitude of the vortex-stretching term is smaller and, therefore,
indispensable in obtaining the correct structure of the recirculation bubble.

The planar projected vectors picturing the organization of the flow field, corre-
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Figure 9. Planar projected velocity vectors at the meridional plane, calculated for
H/R = 2 and Re = 2200.

sponding to the vorticity contours in figure 8, are shown in figure 9. The large
dimensions of the bubble, which is unquestionably axisymmetric, and the strong ve-
locity gradients along the upper region of its outer edge are the most salient features.
A more elaborate examination of the flow details is presented in figures 10–12, which
show a comparison between numerical predictions (lines) and LDV measurements
(symbols), respectively for the axial, radial and circumferential velocity components.
Formally speaking, the velocity components considered in those figures are the Carte-
sian components. However, for a meridional plane, these can be confused with their
cylindrical counterparts (except for the change in sign occurring through the axis
for radial and circumferential velocities). Although we are aware of these differences,
a discussion referencing the latter components was preferred due to the cylindrical
geometry of the present flow problem.

Figure 10(a–j) demonstrates the ability of the numerical method employed in the
simulations to reproduce the minimum details of the flow field, concerning the axial
velocity component (note that upward velocities have been plotted as negative, the
origin of the z-axis is at the base of the cylinder and r is a radial coordinate). As
discussed e.g. by Escudier et al. (1982), the axial velocity profiles exhibit a jet-like
shape near the top wall, evolving to wake-like past the breakdown bubble. Still
noteworthy is the insignificantly small value of the axial velocity within the bubble,
covering a considerable area and influencing the region below. The agreement between
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Figure 10. Measured (symbols) and computed (curve) axial velocity profiles for H/R = 2 and
Re = 2200: (a) z/R = 0.60; (b) 1.00; (c) 1.20; (d) 1.30; (e) 1.40; (f) 1.50; (g) 1.55; (h) 1.60;
(i) 1.70; (j) 1.80.

experiments and predictions is remarkable, excluding the two profiles near the stator
where small discrepancies were caused by the abrupt velocity variations occurring in
this zone (acceleration followed by stagnation). For this reason, an error of just 0.5 mm
in the position of the measured velocity profile brings about significant differences in
the magnitude of the axial velocity, which was confirmed by a sensitivity analysis of
the location of the experimental profile with respect to its numerical counterpart.
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Figure 11. Measured and computed radial velocity profiles for H/R = 2 and Re = 2200:
(a) z/R = 0.60; (b) 1.00; (c) 1.20; (d) 1.30; (e) 1.40; (f) 1.50; (g) 1.55; (h) 1.60; (i) 1.70; (j) 1.80.

The evolution of the profiles of the radial velocity component can be seen in
figure 11(a–j). It is noticeable that, with the natural exception of the regions close
to the top and bottom of the cylindrical container, the radial velocities only become
significant as a consequence of the occurrence of breakdown. The recirculation bubble
is, in addition, responsible for the flattening of the profiles below it. A new change
in the shape of the radial velocity profiles takes place in the vicinity of the rotor,
resulting from the development of the rotating boundary layer. Despite the substantial
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Figure 12. Measured and computed circumferential velocity profiles for H/R = 2 and Re = 2200:
(a) z/R = 0.60; (b) 1.00; (c) 1.30; (d) 1.50; (e) 1.60; (f) 1.70; (g) 1.80.

variations observed in the magnitude of the radial velocity maxima at the various
z-stations, the scale in all plots has been kept constant in order to show the disparity.
The radial velocity values are generally low, which besides making the measurements
more difficult, also makes this component very sensitive to small deviations from
exact geometrical axisymmetry in the test section. Nevertheless, the results show that
both experimental and numerical techniques showed, with reasonable accuracy, all
the main characteristics of a radial velocity field for a flow dominated by vortex
breakdown.

Finally, the profiles of the evolution of the circumferential velocity component
throughout the cylinder are shown in figure 12(a–g). Note that the locations of
these profiles do not exactly coincide with those presented for the other velocities.
As the circumferential velocities show fewer changes in character, therefore having
less appeal for discussion than the previous ones, the corresponding profiles are
fewer as well. In general, the results indicate that a significant region of the flow is
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Figure 13. Measured pointwise amplitude of oscillations as a function of degree of
criticality for H/R = 3.

approximately in solid-body rotation, especially in those profiles neighbouring (but
not crossing) the rotor. The extent of this region is gradually reduced, as one moves
away from the rotor, due to the action of viscous effects. The breakdown bubble
also influences the circumferential velocity, though in a much more tenuous way
than for the other components, as one might intuitively suspect. Its consequences
are restricted to a moderate tendency to homogenize the swirling velocities in the
flow area occupied by the recirculating bubble. This is in close agreement with the
measurements of Bornstein & Escudier (1984), although a different geometry was
under investigation. As general comment, measurements and predictions display an
impressive consonance.

4.3. Unsteady breakdown

The experimental observations of vortex breakdown allowed us to conclude that
the associated flow structures do not indefinitely maintain the steadiness exhibited
by the regime studied in detail in the previous subsection. In fact, as depicted in
figure 5 (dashed line), there is a critical value of the Reynolds number ReC , for
each value of the gap ratio H/R, beyond which the flow has a time-dependent
behaviour. Inspection of the flow for moderate values of Re has indicated a character
that was, apparently, perfectly periodic. From computational studies of swirling
flow in a cylindrical container, Daube & Sørensen (1989), Lopez & Perry (1992)
and Sørensen & Christensen (1995) have reported oscillatory vortex breakdown
regimes of periodic or quasi-periodic nature. Both these simulations (though limited
to axisymmetric formulations) and the present experiments suggest that a supercritical
Hopf bifurcation may occur for such flows, as pointed out by Sørensen & Christensen
(1995). This conjecture could be confirmed by the LDV measurements conducted in
the study.

The low noise level in the LDV signals, when compared to the intensity of the
periodic component (see power spectra in § 4.4), made possible the measurement of
the amplitude characterizing the oscillations. A gap ratio value of 3 was selected this
time because, as already discussed, it produces flow regimes where two breakdown
bubbles are seen to coexist, thus providing the expectation of more enticing flow
dynamics when a periodic state is attained. Pointwise velocity measurements were
then performed, for increasingly higher values of Re. The analysis was initiated when
a dominant frequency was found in the power spectrum, as simple visual detection of
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periodic motion has proved to be rather inaccurate owing to the reduced magnitude
of initial oscillations. Figure 13 shows the normalized value of local amplitudes Ap
as a function of the degree of criticality µ = (Re−ReC). The measuring location was
fixed at (z/R, r/R) = (2.6, 0.6), near the stator, and mean amplitudes were calculated
from velocity records containing 213 samples. An accurate estimate for the value of
ReC , which indicates the onset of time-dependent behaviour, can be computed by
performing a least-squares fit on ln (Ap) = a ln (µ)+b for best correlation. A correlation
coefficient of 0.998 is obtained for ReC = 2435, which appears to be reasonable,
bearing in mind the fact that it was experimentally evaluated. The parameters in the
above function are a = 0.487 and b = −6.921. Hence, the square-root dependence
between Ap and µ, expressed by parameter a, constitutes irrefutable evidence of a
regular Hopf bifurcation (see e.g. Lichtenberg & Lieberman 1992).

In his experiments on a cylindrical container, Escudier (1984) has observed that
until a considerable penetration into the unsteady domain of the stability diagram,
the flow shows negligible departure from axisymmetry. Conversely, Faler & Lei-
bovich (1977) have stated that the phenomenon of vortex breakdown is intrinsically
non-axisymmetric, though Leibovich (1984) has also considered the possibility of
an exception for confined vortices at fairly low Reynolds numbers. In figure 4(f),
which represents an instantaneous view of a time-dependent regime for H/R = 3 and
Re = 2970, one may already perceive certain deviations from axisymmetry that are
chiefly apparent in the structure of the secondary bubble. Other flow visualizations
by Pereira & Sousa (1995), employing a rather intricate experimental procedure that
involved digital processing of video images, have substantiated this observation, al-
though without bringing additional insight into the underlying physical mechanisms.
A clear and enlightening flow visualization for manifestly time-dependent regimes
has been shown to be difficult to accomplish due to various factors, such as the
three-dimensionality of the flow and the strong mixing occurring within the closed
cylindrical container. This latter effect is further enhanced by a pulsatory behaviour,
which precludes the successful use of a flow tracer. Irrespectively of these difficulties
there seems to exist a consensus regarding the fact that, well inside the unsteady do-
main, vortex breakdown displays a non-axisymmetric character, which is corroborated
by the assertions of all authors referred to above.

To provide additional information regarding the unsteady behaviour of the present
flow, numerical simulations have been first carried out for a regime characterized
by H/R = 3 and Re = 2700. This value of the Reynolds number translates into
a relatively moderate value of the degree of criticality, i.e. µ = 265. The full three-
dimensional time-dependent Navier–Stokes equations have again been numerically
solved, conforming to the discussion in the previous paragraph and the recommen-
dations of Faler & Leibovich (1978). Limited by the available computing resources,
the number of grid nodes used for the calculation of a steady regime in § 4.2, i.e.
61 nodes in each of the three coordinate directions, could not be increased. The
procedure for the definition of the initial condition was similar to that in the previous
computation (though now Ω = 33.6 rad s−1), except for the superimposition of a
small non-axisymmetric perturbation to the initial velocity field in the axial direction.
The flow was seen to undergo a prolonged transient characterized by irregularly
oscillatory motion before attaining a purely periodic behaviour. A long simulation
time (not shown) was required prior to obtaining the trace presented in figure 14.
This is in agreement with the calculations of Tsitverblit (1993) for an axisymmetric
cylindrical container: a non-dimensional simulation time νt/R2 = 1.5 was requested
to reach a state characterized by constant amplitude and frequency for Re = 2765 and
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Figure 14. Oscillatory behaviour computed for H/R = 3 and Re = 2700
(the origin of the temporal axis is arbitrary).

H/R = 2.5, confirming the exceptionally high cost of the present three-dimensional
computations. Figure 14 shows a purely periodic character of flow oscillations in
the axial velocity component that is consistent with the experimentally observed
Hopf bifurcation. The non-dimensional frequency extracted from the time-series was
ω = 0.077, favourably comparing with the experimental value ω = 0.075 (see the next
subsection for more details).

The dynamics of unsteady breakdown at Re = 2700 was numerically visualized
by inserting passive particles in the flow. Best results were obtained by setting the
circumferential flow to zero at this stage. The inclusion of the swirling velocity
component has been shown to reduce the clarity of the resulting images, not allowing
a proper examination of the innermost details of the flow. Figure 15(a–i) portrays,
for this reason, instantaneous particle traces in a meridional plane, each image
corresponding to a snapshot of the flow at the time instants marked in figure 14
by filled circles. Additionally, since the presence of a stagnation point in the central
region of the flow has been defined as positive identification of vortex breakdown,
surfaces of constant axial velocity u = 0 were represented in each image as well.
However, the outer surface has been omitted for clarity. From the complete oscillation
cycle depicted in figure 15, one immediately feels tempted to conclude that this
regime is marked by a very close axisymmetry of the flow field. In fact, during
the whole period of oscillation, neither the projection of outer structures in the
meridional plane nor the surfaces circumscribing the three-dimensional region of
reversed flow in the core display any significant deviation from symmetry. The
topology of vortex breakdown bubbles at Re = 2700 seems very similar to that
experimentally mapped in the previous subsection for Re = 2570, though the two
vortex rings have clearly swollen with the increase in Re. Furthermore, these two
structures exhibit appreciable quiescence, notwithstanding the nearly indiscernible
‘swinging’ expressed by the temporal evolution of instantaneous particles traces. In
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Figure 15. Planar-projected (instantaneous) particle traces at a meridional plane and surface of
constant axial velocity (u = 0) in the core, for the time instants marked in figure 14.

contrast, all the region of the outer flow where the axial velocity changes sign shows
intense activity. In the meridional plane, one may observe the signature of several
vortical structures, actively partaking in the oscillatory process. The appearance of
these cells, which were not found in steady regimes, is unquestionably linked to the
establishment of unsteady flow.
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(a)
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Figure 16. Disturbance mode that brings about the periodic oscillations, computed for H/R = 3
and Re = 2700 in terms of velocity components (three-dimensional surfaces of constant velocity
and two-dimensional transverse cross-sections at z/R = 1.5): (a) axial (iso-surface value: 1× 10−5;
contour levels between −0.0020 and 0.0020); (b) radial (iso-surface value: 3 × 10−5; contour
levels between −0.0015 and 0.0015); (c) circumferential (iso-surface value: 5× 10−5; contour levels
between −0.0015 and 0.0015). In all cases 31 levels were uniformly distributed between maximum
and minimum values.
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In order to proceed with a detailed analysis of the present regime, the disturbance
mode responsible for the periodic behaviour of the flow has been calculated. Figure 16
portrays the result in terms of (a) axial, (b) radial and (c) circumferential components
of the perturbation velocity. Both three-dimensional surfaces of constant velocity and
two-dimensional transverse cuts at z/R = 1.5 are represented. Based on this figure, the
reason why the flow regime may be misinterpreted as axisymmetric when viewing only
meridional planes becomes readily obvious. The mode exhibits azimuthal periodicity
of π/2 radians (wavenumber n = 4), resulting in the symmetry of the flow pattern
with respect to the central axis for every meridional plane. However, if restricted to
the vortex breakdown bubbles only, even a three-dimensional view of the structures
may seem very closely axisymmetric. This may be explained by seeing that, in the
vicinity of the central axis, the contours values of the velocity perturbations are
constantly close to zero (see the cut planes in figure 16). It must also be mentioned
that, with the course of time, the perturbation mode rotates. Bearing this in mind,
a closer look to figure 16 brings additional insight about the flow dynamics. It can
be seen that the surfaces of constant velocity perturbation have been shaped into
four well-defined interpenetrating helixes. The spinning motion of these ‘corkscrews’
clarifies the origin of the axial excursions of the cells observed in the meridional plane
illustrated in figure 15. Thus, one may conclude that the vortical structures referred
to in the previous paragraph actually consist of helical vortices. The origin of these
vortices appears to be centrifugal instability, giving rise to the formation of vortex
rings that are convected in spirals by the main flow and, ultimately, generating the
unsteadiness. The observation that figure 16 shows the structures emanating from the
region where centrifugal effects are large strongly supports the present conjecture. In
agreement, in their investigation on the dynamics of confined vortices, Escudier et al.
(1982) have attributed the formation of cells in the annular gap between the wall and
the vortex core to centrifugal instability as well.

To discover whether the unsteady flow preserves the above-described planar sym-
metry, a second numerical simulation was carried out for higher the Re of 3100,
increasing the degree of criticality to µ = 665. The new value for the spinning ve-
locity of the rotor was Ω = 38.6 rad s−1. Other numerical parameters were, once
again, kept unchanged. Following a very long simulation time (νt/R2 > 2), the time
trace shown in figure 17 was obtained. As expected, the (mean) amplitude of axial
velocity oscillations has become larger, though exhibiting a certain irregularity from
a low-frequency modulation. The dominant spectral component is characterized by
a non-dimensional frequency ω = 0.079. This value is in good agreement with the
experimental measurement ω = 0.076 (see the next subsection). The error of 4% in the
determination of the frequency of oscillation may still be judged as lying within the
boundaries of uncertainty for the experimental technique. However, the presence of a
low-frequency component could not be detected in the experiments below Re = 3900;
the only possible explanation is that, at early stages, very little energy is contained in
this component.

The dynamics displayed by the oscillatory regime at Re = 3100 has been illustrated
in the same way as figure 15: a new series of snapshots sampled at the time instants
indicated in figure 17, is shown in figure 18(a–i). It is unquestionable that the flow
breakdown is now notably non-axisymmetric. Moreover, the interaction among the
various flow structures is significantly more complex. Apart from the fact that the two
breakdowns still coexist during the whole oscillation process, one cannot call these
structures quiescent anymore. First, though the surfaces encircling the regions of
reversed flow in the core appear in figure 18(a–d) as a single entity, these can be seen
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Figure 17. Oscillatory behaviour computed for H/R = 3 and Re = 3100
(the origin of the temporal axis is arbitrary).

detaching in figure 18(e) and merging again shortly after. This behaviour resembles
that observed by Lopez (1990) in his simulations of a closed container for H/R = 2.5
and Re = 2765, who described the nature of the unsteadiness (paraphrasing) as:
two bubbles coalescing and separating and coalescing etc. However, the dynamics
of the breakdown structures depicted in figure 18 shows a clear three-dimensional
character, which could never be found by Lopez due to the limitations imposed by
an axisymmetric formulation. Secondly, the two breakdowns (separately or together)
gyrate about the central axis in the same sense as the main flow. Although the surface
associated with the primary breakdown maintains approximately the same shape as
in the preceding flow regime, i.e. a semi-spherical cap, figure 18 demonstrates that
this cap is now strongly tilted. As a consequence, the uppermost stagnation point
describes a wide circular trajectory. On the other hand, the surface identified as the
secondary breakdown has mutated into an S-shape (see e.g. figure 18f). In conjunction
with the observation of the instantaneous trajectories shown by the passive tracer in
figure 18, these facts attest that a shift from bubble- (Re = 2700) to spiral-type vortex
breakdown (Re = 3100) has occurred. Further, the lack of any symmetry observed in
the outer region reinforces this and strongly suggests that the flow became unstable
to fully non-symmetric disturbances. Recent experimental investigations conducted
by Brücker (1993) in a cylindrical channel, employing particle tracking velocimetry,
have captured an instantaneous core flow topology exhibiting certain affinities with
the one in the present simulations (see e.g. figures 18a and 18f). However, in the
present case, the axial span of the spiral core is inhibited by the presence of the
rotor.

The observations described in this section and the main findings reported by
Escudier (1984) concur in essence: as here Escudier described two distinct regimes of
unsteady breakdown, namely ‘steadily oscillating flow’ and ‘precession of the lower
breakdown structure’. It is our conviction that the mechanisms governing the time-



Confined vortex breakdown generated by a rotating cone 315

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 18. Planar-projected (instantaneous) particle traces at a meridional plane and surface of
constant axial velocity (u = 0) in the core, for the time instants marked in figure 17.

dependent flow behaviour are qualitatively the same in both studies, despite the
difference in the geometry of the rotor.

4.4. Transition to turbulence

In his experiments on a closed cylindrical container, Escudier (1984) observed that the
continuing increase of the Reynolds number has the ultimate consequence of giving
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Figure 19. Measured u-velocity power spectra for H/R = 3 at various regimes.

rise to turbulent flow. The same observation was made for the confined swirling flow
generated by a rotating cone described here. Thus, it is relevant to determine which
physical mechanisms contributed to the route to turbulence exhibited by the present
flow. However, the cost of the required numerical simulations is prohibitive, as we
have concluded that such an investigation must reflect the markedly three-dimensional
character of the flow at fairly high Re. For this reason, the study of the transition
scenario was entirely experimental.

The investigations were based on the analysis of the spectral content of the flow,
using LDV techniques to experimentally produce power spectra covering the various
regimes up to turbulence. Special care was taken to ensure both stability of flow
conditions and repeatability of results. Although without a significant outcome, the
possible occurrence of hysteresis was also investigated. The majority of the present
results concern observations for H/R = 3, as that was the value of the gap ratio
selected for the study to determine the onset of unsteadiness. The case characterized
by H/R = 2 is just briefly referenced, since it displayed similar features. However, it
has shown less regularity in the repetition of the results.

The relevant u-velocity power spectra obtained from the experiments for H/R = 3
can be seen in figure 19, as a function of Re. The (logarithmic) power scale is
arbitrary but it was kept unchanged throughout the measurements. Thus, figure
19 shows only a very slight increase in background noise level with the Reynolds
number, up to Re = 4565. Beyond Re = 7325, however, the level of the background
can be observed to increase monotonically. At a moderate value of Re, figure 19
indicates the establishment of a purely periodic state, characterized by a frequency
ω1. In agreement with the analysis performed in § 4.3, this regime appears at Re =
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2435 as the result of a supercritical Hopf bifurcation. Subsequently, the periodic
behaviour is substituted by a quasi-periodic state, described by the coexistence of
two incommensurate frequencies, respectively ω1 and ω2 (plus linear combinations).
Therefore, a second Hopf bifurcation occurs in the range Re = 3865 to Re = 3960. A
new quasi-periodic state, characterized by three frequencies (ω3 appears), is found at
Re = 4060. During this process, the main components exhibit a continuous growth
in power, ω1 reaching a level nearly four orders of magnitude above that of the
instrument noise background.

In the spectrum obtained at Re = 4060, some doubts arise whether the component
identified as ω3, presumably associated with a third Hopf bifurcation, is really an
independent frequency. In fact, the linear combination 2ω2 + ω1 yields a value very
close to that attributed to ω3. However, for Re > 4565 (see figure 19), the frequency
component ω3 is seen to persist while ω2 definitely decreases. This observation seems
to corroborate our view that a state with three incommensurate frequencies and no
broadband noise was obtained at Re = 4060. In contrast, the disappearance of ω2

at Re = 4565 is accompanied by the emergence of a weak component of broadband
noise (labelled B in figure 19).

The sequence of events above, displaying a succession of Hopf bifurcations followed
by a chaotic element, supports the conjecture that the Newhouse–Ruelle–Takens
theorem applies to the present transition scenario (Ruelle & Takens 1971; Newhouse,
Ruelle & Takens 1978). Our observations are in harmony with the predictions of
these authors as the successive physical mechanisms can be classified as follows. First,
the flow becomes unstable, approaching a stable periodic attractor (a limit cycle)
topologically described by a one-dimensional torus T 1 in phase space. Secondly, the
limit cycle becomes unstable and the new stable attractor yields a quasi-periodic flow
on a torus T 2, as the ratio ω2/ω1 has been shown to be irrational. A quasi-periodic
regime on a three-dimensional torus T 3 follows, but this state is very sensitive to
infinitesimal perturbations and transition to turbulence was seen to occur shortly
after the detection of the third discrete frequency. Thus, the new attractor, usually
referred as a ‘strange attractor’, takes over the flow, attracting trajectories in the phase
space to a subspace where they perpectually wander in a chaotic pattern. The broad
component associated with this behaviour arises in the area where ω2 (that vanished)
was formerly found, which makes this frequency a probable source of excitation.
However, the combination ω3−ω1 lies in the same frequency range as well, therefore
B may well have been excited by the non linear interaction between modes ω1 and
ω3 instead. In that case, the present mechanism would be strikingly similar to that
observed by Fenstermacher, Swinney & Gollub (1979) for the transition to chaotic
Taylor vortex flow.

The regime attained for Re = 4565 is only incipiently turbulent, still exhibiting a
significant organization, which is expressed by the persistence of sharp peaks in the
power spectrum. Further increasing Re, the evolution to complete turbulence contin-
ues. Following the initial strengthening of the periodic component ω3, a competition
arises between ω1 and 2ω3 − ω1 for primacy over the flow, allied to the continuous
increase of the continuum level. The maximum Reynolds number (using the present
working fluid) was reached at Re = 16 645 and the corresponding power spectrum
displays most of the features characterizing a weakly turbulent flow. However, the
frequency component ω1 can still be identified, probably associated with the estab-
lishment of a turbulent flow with ‘precession of vortex core’ (PVC), which is known
to be a frequent condition of highly swirling flows (Gupta, Lilley & Syred 1984).

Table 2 summarizes the transitions observed in confined swirling flow generated by
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Reynolds Frequency
number Transition components Dynamical regime

2190 Vortex breakdown None Time-independent
2435 Hopf bifurcation ω1 Periodic
3865–3960 Hopf bifurcation ω1, ω2 Quasi-periodic
3960–4060 Hopf bifurcation ω1, ω2, ω3 Quasi-periodic
4345–4565 B appears ω1, ω3, B Weakly turbulent flow with several

spectral components
∼ 16645 ω3 disappears ω1, B Weakly turbulent flow with one

spectral component

Table 2. Transitions in confined swirling flow generated by a rotating cone for H/R = 3.
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Figure 20. Measured non-dimensional frequencies of spectral components as a function of
Reynolds number for H/R = 3.

a rotating cone for H/R = 3. Note that the present transition scenario is rather less
intricate than that numerically established by Sørensen & Christensen (1995). The
dissimilarities may be attributed to the differences in geometry, but it is our strong
belief that these mainly result from the axisymmetric formulation adopted by the
aforementioned authors, which we have shown to be physically unrealistic.

The experimentally determined frequency values have been shown to be approxi-
mately independent of Re, as depicted in figure 20. Nevertheless, ω1 was seen to vary
between 0.074 and 0.077 (smoothly increasing), while ω2 and ω3 assumed the values
0.014 and 0.103, respectively. Such a small dependence of the dominant frequency
ω1 on the Reynolds number is somewhat surprising, since it is well known that the
period of a Hopf bifurcation is amplitude dependent. As shown in figure 13 (see § 4.3),
the amplitude of the oscillation grows with the square root of the degree of criticality.
However, the measured oscillation amplitudes were relatively small throughout. This
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Figure 21. ‘Frequency jump’ observed for H/R = 2.

fact was also confirmed by the numerical simulations carried out for Re = 2700 and
3100 (see figures 14 and 17).

As mentioned earlier, the investigation of the case characterized by H/R = 2
indicated a transition picture that was essentially similar to the one described for
H/R = 3. At values of Re below 3095, it was not possible to find any periodic
components in the flow. However, in the range defined by Re = 3095 and Re = 4885,
the flow exhibited a purely periodic behaviour. At Re = 5045 two frequencies were
simultaneously measured, respectively ω2 = 0.248 and ω3 = 0.013, characterizing a
quasi-periodic flow. The most salient feature observed for H/R = 2 was the ‘frequency
jump’ shown in figure 21. A discontinuity in the evolution of the non-dimensional
frequency is seen occurring between Re = 4155 and Re = 4370, promoting a jump
from ω1 = 0.138 to ω2 = 0.248 (both regimes were periodic). The change in the
frequency of oscillation might be due to a reorganization of the flow structures
inside the cylindrical container that was not visualized. This would explain why the
phenomenon could not be found for a larger value of the gap ratio, i.e. H/R = 3, as
a larger volume is available for the flow structures in this case. It is curious to note
that, once again, there was a parallel in the results of Fenstermacher et al. (1979).

5. Concluding remarks
The swirling flow driven by a rotating cone within a closed cylindrical container

has been under investigation. The experimental study embraced flow visualization
and laser–Doppler velocity measurements of the entire flow field. Three-dimensional
time-dependent numerical simulations have been carried out as well. A semi-implicit
(Crank–Nicholson/Adams–Bashforth) method was used for the time advancement
and a second-order central finite difference scheme was employed in the discretization
of spatial derivatives.

Experiments and numerical simulations have demonstrated that, for some combi-
nations of Reynolds number and gap ratio, bubble-type vortex breakdown occurs.
The topology of steady breakdown has been shown to be similar to that reported
by Escudier (1984), corresponding to ring-like structures. As a consequence, many
similarities could also be found when establishing a stability diagram for the present
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flow. Numerical simulations have been compared with detailed velocity measurements
at Reynolds number 2200, for a gap ratio of 2. The extent of the agreement between
these two techniques has been carefully examined and was found to be very good.

Once again in accordance with the work of Escudier (1984), oscillatory flow regimes
were detected when the Reynolds number exceeded a critical value, which varied with
the gap ratio. The experimentally observed periodic behaviour indicated that the
mechanism responsible for transition to unsteady flow was a supercritical Hopf bi-
furcation. Numerical simulations of two time-dependent regimes characterized by
Re = 2700 and 3100 for H/R = 3 have revealed the dynamics of breakdown struc-
tures. At Re = 2700, it was seen that the initially axisymmetric steady flow sustained
the growth of a three-dimensional disturbance of azimuthal wavenumber n = 4, giving
rise to a stable time-periodic regime. Nevertheless, the breakdowns exhibited negli-
gible departure from axisymmetry at this stage and retained the original topology,
i.e. the two vortex rings. In contrast, primary and secondary breakdowns were seen
merging and separating during the oscillation process at Re = 3100. Furthermore,
these structures were observed in precession about the central axis, portraying a fully
non-symmetric behaviour. Such a dramatic change in the nature of the oscillatory
motion was attributed to a shift from bubble- (Re = 2700) to spiral-type breakdown
(Re = 3100). Altogether, these facts sanction the idea, also recently put forward
by other researchers, that three-dimensional time-dependent simulations of the phe-
nomenon must be performed to achieve full understanding of the underlying physics.

From an examination of velocity power spectra measured throughout the unsteady
flow regimes, a route to turbulence could be educed. Repeated bifurcations yielded
transitions to periodic and quasi-periodic flows, respectively characterized by one, two
and three discrete frequencies (and, eventually, higher harmonics). The appearance of
a third frequency was followed by the onset of broadband noise and chaotic motion.
Thus, on increasing the Reynolds number, a weakly turbulent regime was reached. At
the maximum value of the parameter attained in the experiments, the corresponding
power spectrum still exhibited one spectral component, which was presumably due
to precession of the vortex core.

Finally, the authors have strong reasons to believe that, similarly to what was
unequivocally verified for steady breakdown, the physical mechanisms governing the
unsteady breakdown regimes disclosed in the present study are qualitatively the same
as in the flows investigated by Escudier (1984).

The computing facilities provided by ‘Fundação para a Computação Cientı́fica
Nacional’ for the accomplishment of numerical simulations are gratefully acknow-
ledged.
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